43 research outputs found

    Stokesian Dynamics simulation of Brownian suspensions

    Get PDF
    The non-equilibrium behaviour of concentrated colloidal dispersions is studied by Stokesian Dynamics, a general molecular-dynamics-like technique for simulating particles suspended in a viscous fluid. The simulations are of a suspension of monodisperse Brownian hard spheres in simple shear flow as a function of the Péclet number, Pe, which measures the relative importance of shear and Brownian forces. Three clearly defined regions of behaviour are revealed. There is first a Brownian-motion-dominated regime (Pe ≤ 1) where departures from equilibrium in structure and diffusion are small, but the suspension viscosity shear thins dramatically. When the Brownian and hydrodynamic forces balance (Pe ≈ 10), the dispersion forms a new ‘phase’ with the particles aligned in ‘strings’ along the flow direction and the strings are arranged hexagonally. This flow-induced ordering persists over a range of Pe and, while the structure and diffusivity now vary considerably, the rheology remains unchanged. Finally, there is a hydrodynamically dominated regime (Pe > 200) with a dramatic change in the long-time self-diffusivity and the rheology. Here, as the Péclet number increases the suspension shear thickens owing to the formation of large clusters. The simulation results are shown to agree well with experiment

    Emerging Role of Circulating Tumor Cells in Gastric Cancer

    Get PDF
    With over 1 million incidence cases and more than 780,000 deaths in 2018, gastric cancer (GC) was ranked as the 5th most common cancer and the 3rd leading cause of cancer deaths worldwide. Though several biomarkers, including carcinoembryonic antigen (CEA), cancer antigen 19-9 (CA19-9), and cancer antigen 72-4 (CA72-4), have been identified, their diagnostic accuracies were modest. Circulating tumor cells (CTCs), cells derived from tumors and present in body fluids, have recently emerged as promising biomarkers, diagnostically and prognostically, of cancers, including GC. In this review, we present the landscape of CTCs from migration, to the presence in circulation, biologic properties, and morphologic heterogeneities. We evaluated clinical implications of CTCs in GC patients, including diagnosis, prognosis, and therapeutic management, as well as their application in immunotherapy. On the one hand, major challenges in using CTCs in GC were analyzed, from the differences of cut-off values of CTC positivity, to techniques used for sampling, storage conditions, and CTC molecular markers, as well as the unavailability of relevant enrichment and detection techniques. On the other hand, we discussed future perspectives of using CTCs in GC management and research, including the use of circulating tumor microembolies; of CTC checkpoint blockade in immunotherapy; and of organoid models. Despite the fact that there are remaining challenges in techniques, CTCs have potential as novel biomarkers and/or a non-invasive method for diagnostics, prognostics, and treatment monitoring of GC, particularly in the era of precision medicine

    HIV-Associated TB in An Giang Province, Vietnam, 2001–2004: Epidemiology and TB Treatment Outcomes

    Get PDF
    BACKGROUND: Mortality is high in HIV-infected TB patients, but few studies from Southeast Asia have documented the benefits of interventions, such as co-trimoxazole (CTX), in reducing mortality during TB treatment. To help guide policy in Vietnam, we studied the epidemiology of HIV-associated TB in one province and examined factors associated with outcomes, including the impact of CTX use. METHODOLOGY/PRINCIPAL FINDINGS: We retrospectively abstracted data for all HIV-infected persons diagnosed with TB from 2001-2004 in An Giang, a province in southern Vietnam in which TB patients receive HIV counseling and testing. We used standard WHO definitions to classify TB treatment outcomes. We conducted multivariate analysis to identify risk factors for the composite outcome of death, default, or treatment failure during TB treatment. From 2001-2004, 637 HIV-infected TB patients were diagnosed in An Giang. Of these, 501 (79%) were male, 321 (50%) were aged 25-34 years, and the most common self-reported HIV risk factor was sex with a commercial sex worker in 221 (35%). TB was classified as smear-positive in 531 (83%). During TB treatment, 167 (26%) patients died, 9 (1%) defaulted, and 6 (1%) failed treatment. Of 454 patients who took CTX, 116 (26%) had an unsuccessful outcome compared with 33 (70%) of 47 patients who did not take CTX (relative risk, 0.4; 95% confidence interval [CI], 0.3-0.5). Adjusting for male sex, rural residence, TB smear status and disease location, and the occurrence of adverse events during TB treatment in multivariate analysis, the benefit of CTX persisted (adjusted odds ratio for unsuccessful outcome 0.1; CI, 0.1-0.3). CONCLUSIONS/SIGNIFICANCE: In An Giang, Vietnam, HIV-associated TB was associated with poor TB treatment outcomes. Outcomes were significantly better in those taking CTX. This finding suggests that Vietnam should consider applying WHO recommendations to prescribe CTX to all HIV-infected TB patients

    Parallel processing of spaceborne imaging radar data

    No full text
    We discuss the results of a collaborative project on parallel processing of Synthetic Aperture Radar (SAR) data, carried out between the NASA/Jet Propulsion Laboratory (JPL), the California Institute of Technology (Caltech) and Intel Scalable Systems Division (SSD). Through this collaborative e ort, we have successfully parallelized the most compute-intensive SAR correlator phase of the Spaceborne Shuttle Imaging Radar-C/X-Band SAR (SIR-C/X-SAR) code, for the Intel Paragon. We describe the data decomposition, the scalable high-performance I/O model, and the node-level optimizations which enable us to obtain e cient processing throughput. In particular, we point out an interesting double level of parallelization arising in the data decomposition which increases substantially our ability to support \high volume " SAR. Results are presented from this code running in parallel on the Intel Paragon. A representative set of SAR data, of size 800 Megabytes, which was collected by the SIR-C/X-SAR instrument aboard NASA's Space Shuttle in 15 seconds, is processed in 55 seconds on the Concurrent Supercomputing Consortium's Paragon XP/S 35+. This compares well with atimeof12minutes for the current SIR-C/X-SAR processing system at JPL. For the rst time, a commercial system ca

    Stokesian Dynamics simulation of Brownian suspensions

    No full text

    Anomalies Detection in Chest X-Rays Images Using Faster R-CNN and YOLO

    No full text
    Lungs are crucial parts of the human body and can be captured as Chest x-ray images for disease diagnosis. Unfortunately, in many countries, hospitals and healthcare centers lack qualified doctors for medical images-based diagnosis. Recent numerous advancements in artificial intelligence have deployed with many medical applications to support doctors for disease diagnosis. In our research, we have leveraged YOLOv5s to identify and extract lungs and performed segmentation tasks with Fast R-CNN and YOLOv5 for comparison. The lung region abnormality detection models have pretty good average precision. For example, the YOLOv5 model outperforms both in terms of training time, prediction, and accuracy, with the [email protected] and [email protected]:.95 metric values, 0.616 and 0.322 on 2,500 images of 5 abnormalities (aortic enlargement, cardiomegaly, lung opacity, pleural effusion, and pulmonary fibrosis)

    Recognition and 3D Visualization of Human Body Parts and Bone Areas Using CT Images

    No full text
    The advent of medical imaging significantly assisted in disease diagnosis and treatment. This study introduces to a framework for detecting several human body parts in Computerised Tomography (CT) images formatted in DICOM files. In addition, the method can highlight the bone areas inside CT images and transform 2D slices into a visual 3D model to illustrate the structure of human body parts. Firstly, we leveraged shallow convolutional Neural Networks to classify body parts and detect bone areas in each part. Then, Grad-CAM was applied to highlight the bone areas. Finally, Insight and Visualization libraries were utilized to visualize slides in 3D of a body part. As a result, the classifiers achieved 98 % in F1-score in the classification of human body parts on a CT image dataset, including 1234 slides capturing body parts from a woman for the training phase and 1245 images from a male for testing. In addition, distinguishing between bone and non-bone images can reach 97 % in F1-score on the dataset generated by setting a threshold value to reveal bone areas in CT images. Moreover, the Grad-CAM-based approach can provide clear, accurate visualizations with segmented bones in the image. Also, we successfully converted 2D slice images of a body part into a lively 3D model that provided a more intuitive view from any angle. The proposed approach is expected to provide an interesting visual tool for supporting doctors in medical image-based disease diagnosis

    Multiresponse Optimization for a Novel Compliant Z-Stage by a Hybridization of Response Surface Method and Whale Optimization Algorithm

    No full text
    A novel compliant z-stage is applied for positioning and indenting a specimen in nano/microindentation testing system. For an excellent operation, the proposed z-stage can concurrently satisfy multicriteria comprising high safety factor, small parasitic motion, and large output displacement. The key aims of this article are to present a novel design of the compliant z-stage as well as an effective integration methodology of Taguchi method, response surface method, weight factor calculation based on signal to noise, and the whale optimization algorithm to resolve a design optimal problem so as to enrich the quality performances of the proposed stage. Primarily, the z-stage is designed based on four-lever amplifier, compliant hinge shifted arrangement mechanism, zigzag-based flexure spring guiding mechanism, and symmetric six leaf hinges-based parallel guiding mechanism. Secondly, the number experiment data are achieved by the Taguchi method and finite element analysis. Subsequently, the regression functions among input variables and quality characteristics are formed by exploiting response surface method. In addition, the weight factors for every characteristic are defined. Additionally, the sensitivity analysis is accomplished for determining influences of input variables on quality responses. Ultimately, based on regression equations, the whale optimization algorithm is executed to define the optimal factors. The consequences indicated that the output deformation is about 454.55 μm and the safety factor is around 2.38. Furthermore, the errors among the optimal consequences and the confirmations for the safety factor and output deformation are 7.12% and 4.25%, correspondingly. By using Wilcoxon and Friedman methods, the results revealed that the proposed algorithm is better than the cuckoo search algorithm. Based on the quality convergence characteristics of hybrid approach, the proposed method is proficient for resolving complicated multiobjective optimization
    corecore